
ZFS
Internals

“A Compilation of blog posts”

Version 0.1 (Draft)

- [Leal’s blog] -

http://www.eall.com.br/blog

(c) 2010

 I

http://www.eall.com.br/blog
http://www.eall.com.br/blog

ZFS Internals (part #1)

PLEASE BE AWARE THAT ANY INFORMATION YOU MAY FIND HERE MAY BE INAC-
CURATE, AND COULD INCLUDE TECHNICAL INCACCURACIES, TYPOGRAPHICAL ER-

RORS, AND EVEN SPELLING ERRORS.

 From the MANUAL page:

 The zdb command is used by support engineers to diagnose

 failures and gather statistics. Since the ZFS file system is

 always consistent on disk and is self-repairing, zdb should

 only be run under the direction by a support engineer.

DO NOT TRY IT IN PRODUCTION. USE AT YOUR OWN RISK!

Do we have a deal? ;-)

A few days ago i was trying to figure it out how ZFS copy-on-write semantics
really works, understand the ZFS on disk layout, and my friends were the zfson-
diskformat specification, the source code, and zdb. I did search on the web loo-
king for something like what i´m writing here, and could not find anything.
That´s why i´m writing this article, thinking it can be useful for somebody else.
Let´s start with a two disks pool (disk0 and disk1):
mkfile 100m /var/fakedevices/disk0

mkfile 100m /var/fakedevices/disk1

zpool create cow /var/fakedevices/disk0 /var/fakedevices/disk1

zfs create cow/fs01

The recordsize is the default (128K):

zfs get recordsize cow/fs01

NAME PROPERTY VALUE SOURCE

cow/fs01 recordsize 128K default

Ok, we can use the THIRDPARTYLICENSEREADME.html file from “/opt/staroffice8/”
to have a good file to make the tests (size: 211045). First, we need the object ID
(aka inode):

 II

http://www.eall.com.br/blog/?p=312
http://www.eall.com.br/blog/?p=312
http://opensolaris.org/os/community/zfs/
http://opensolaris.org/os/community/zfs/
http://en.wikipedia.org/wiki/ZFS#Copy-on-write_transactional_model
http://en.wikipedia.org/wiki/ZFS#Copy-on-write_transactional_model
http://www.opensolaris.org/os/community/zfs/docs/ondiskformat0822.pdf
http://www.opensolaris.org/os/community/zfs/docs/ondiskformat0822.pdf
http://www.opensolaris.org/os/community/zfs/docs/ondiskformat0822.pdf
http://www.opensolaris.org/os/community/zfs/docs/ondiskformat0822.pdf
http://www.opensolaris.org/os/community/zfs/source/
http://www.opensolaris.org/os/community/zfs/source/
http://src.opensolaris.org/source/xref/onnv/onnv-gate/usr/src/cmd/zdb/zdb.c
http://src.opensolaris.org/source/xref/onnv/onnv-gate/usr/src/cmd/zdb/zdb.c

ls -i /cow/fs01/

 4 THIRDPARTYLICENSEREADME.html

Now the nice part…

zdb -dddddd cow/fs01 4

... snipped ...

 Indirect blocks:

 0 L1 0:9800:400 1:9800:400 4000L/400P F=2 B=190

 0 L0 1:40000:20000 20000L/20000P F=1 B=190

 20000 L0 0:40000:20000 20000L/20000P F=1 B=190

 segment [0000000000000000, 0000000001000000) size 16M

Now we need the concepts in the zfsondiskformat doc. Let´s look the first block
line:

0 L1 0:9800:400 1:9800:400 4000L/400P F=2 B=190

The L1 means two levels of indirection (number of block pointers which need to
be traversed to arrive at this data). The “0:9800:400” is: the device where this
block is (0 = /var/fakedevices/disk0), the offset from the begining of the disk
(9800), and the size of the block (0x400 = 1K), respectivelly. So, ZFS is using two
disk blocks to hold pointers to file data…

ps.: 0:9800 is the Data virtual Address 1 (dva1)

At the end of the line there are two other important informations: F=2, and
B=190. The first is the fill count, and describes the number of non-zero block
pointers under this block pointer. Remember our file is greater than 128K (the
default recordsize), so ZFS needs two blocks (FSB), to hold our file. And the se-
cond is the birth time, what is the same as the txg number(190), that creates that
block.

Now, let´s get our data! Looking at the second block line, we have:

0 L0 1:40000:20000 20000L/20000P F=1 B=190

Based on zfsondiskformat doc, we know that L0 is the block level that holds data
(we can have up to six levels). And in this level, the fill count has a little different
interpretation. Here the F= means if the block has data or not (0 or 1), what is
different from the levels 1 and above, where it means “how many” non-zero block

 III

http://www.opensolaris.org/os/community/zfs/docs/ondiskformat0822.pdf
http://www.opensolaris.org/os/community/zfs/docs/ondiskformat0822.pdf
http://www.opensolaris.org/os/community/zfs/docs/ondiskformat0822.pdf
http://www.opensolaris.org/os/community/zfs/docs/ondiskformat0822.pdf

pointers under this block pointer. So, we can see our data using the -R option
from zdb:

zdb -R cow:1:40000:20000 | head -10

Found vdev: /var/fakedevices/disk1

cow:1:40000:20000

 0 1 2 3 4 5 6 7 8 9 a b c d e f 0123456789abcdef

000000: 505954434f44213c 50206c6d74682045 !DOCTYPE html P

000010: 2d222043494c4255 442f2f4333572f2f UBLIC "-//W3C//D

000020: 204c4d5448204454 6172542031302e34 TD HTML 4.01 Tra

000030: 616e6f697469736e 2220224e452f2f6c nsitional//EN" "

000040: 772f2f3a70747468 726f2e33772e7777 http://www.w3.or

000050: 6d74682f52542f67 65736f6f6c2f346c g/TR/html4/loose

That´s nice! 16 bytes per line, that is our file. Let´s read it for real:

zdb -R cow:1:40000:20000:r

... snipped ...

The intent of this document is to state the conditions under which

VIGRA may be copied, such that the author maintains some

semblance of artistic control over the development of the library,

while giving the users of the library the right to use and

distribute VIGRA in a more-or-less customary fashion, plus the

right to

ps.: Don´t forget that is the first 128K of our file…

We can assemble the whole file like this:

zdb -R cow:1:40000:20000:r 2> /tmp/file1.dump

zdb -R cow:0:40000:20000:r 2> /tmp/file2.dump

cat /tmp/file2.dump >> /tmp/file1.dump

diff /tmp/file1.dump /cow/fs01/THIRDPARTYLICENSEREADME.html

Warning: missing newline at end of file /tmp/file1.dump

5032d5031

<

Ok, that´s warning is something we can understand. But let´s change something
on that file, to see the copy-on-write in action… we will use VI to change the

 IV

http://www.w3.or
http://www.w3.or

“END OF TERMS AND CONDITIONS” line (four lines before the EOF), to “FIM OF
TERMS AND CONDITIONS”.

vi THIRDPARTYLICENSEREADME.html

zdb -dddddd cow/fs01 4

... snipped ...

Indirect blocks:

 0 L1 0:1205800:400 1:b400:400 4000L/400P F=2 B=1211

 0 L0 0:60000:20000 20000L/20000P F=1 B=1211

 20000 L0 0:1220000:20000 20000L/20000P F=1 B=1211

 segment [0000000000000000, 0000000001000000) size 16M

All blocks were reallocated! The first L1, and the two L0 (data blocks). That´s so-
mething a little strange… I was hoping to see all the block pointers reallocated
(metadata), and the data block that holds the bytes i have changed. The first data
block that holds the first 128K of our file, now is on the first device (0), and se-
cond block is still on the first device (0), but in another location. We can be sure
by looking the new offsets, and the new txg creation time (B=1211). Let´s see
our data again, getting it from the new locations:

zdb -R cow:0:60000:20000:r 2> /tmp/file3.dump

zdb -R cow:0:1220000:20000:r 2> /tmp/file4.dump

cat /tmp/file4.dump >> /tmp/file3.dump

diff /tmp/file3.dump THIRDPARTYLICENSEREADME.html

Warning: missing newline at end of file /tmp/file3.dump

5032d5031

<

Ok, and the old blocks, they are still there?

zdb -R cow:1:40000:20000:r 2> /tmp/file1.dump

zdb -R cow:0:40000:20000:r 2> /tmp/file2.dump

cat /tmp/file2.dump >> /tmp/file1.dump

diff /tmp/file1.dump THIRDPARTYLICENSEREADME.html

Warning: missing newline at end of file /tmp/file1.dump

5027c5027

< END OF TERMS AND CONDITIONS

> FIM OF TERMS AND CONDITIONS

 V

5032d5031

<

Really nice! In our test the ZFS copy-on-write moved the whole file from on region
on disk to another. But if we were talking about a really big file, let´s say 1GB?
Many 128K data blocks, and just a 1K change. ZFS copy-on-write would reallocate
all data blocks too? And why ZFS reallocated the “untouched” block in our exam-
ple (the first data block L0)?
Something to look in another time. Stay tuned… ;-)
peace.

EDITED:

The cow is used to guarantee filesystem consistency without “fsck”, so without
chance of leaving the filesystem in an inconsistent state. For that, ZFS *never*
overwrite a block, always that ZFS needs to write something, “data” or “metadata”,
it writes it to a brand new location. Here in my example, because my test was with
a “flat” file (not structured), the VI (and not because it is an ancient program ;),
needs to rewrite the whole file to update a little part of it. You are right in the
point that has nothing to do with the cow. But i did show that the cow takes place
in “data” updates too. And sometimes we forget that flat files are updated like
that…
Thanks a lot for your comments!
Leal.

 VI

ZFS Internals (part #2)

PLEASE BE AWARE THAT ANY INFORMATION YOU MAY FIND HERE MAY BE INAC-
CURATE, AND COULD INCLUDE TECHNICAL INACCURACIES, TYPOGRAPHICAL ER-

RORS, AND EVEN SPELLING ERRORS.

 From the MANUAL page:

 The zdb command is used by support engineers to diagnose

 failures and gather statistics. Since the ZFS file system is

 always consistent on disk and is self-repairing, zdb should

 only be run under the direction by a support engineer.

DO NOT TRY IT IN PRODUCTION. USE AT YOUR OWN RISK!

An interesting point about ZFS block pointers, is the Data virtual address (dva). In
my last post about ZFS internals, i had the following:

zdb -dddddd cow/fs01 4

... snipped ...

Indirect blocks:

 0 L1 0:1205800:400 1:b400:400 4000L/400P F=2 B=1211

 0 L0 0:60000:20000 20000L/20000P F=1 B=1211

 20000 L0 0:1220000:20000 20000L/20000P F=1 B=1211

 segment [0000000000000000, 0000000001000000) size 16M

Let´s look the first data block (L0):

0 L0 0:60000:20000 20000L/20000P F=1 B=1211

The dva for that block is the combination of 0 (indicating the physical vdev where
that block is), and the 60000, which means the offset from the begining of the
physical vdev (starting after the vdev labels, plus the boot block), 4MB total.

So, let´s try to read our file using the dva information:

 VII

http://www.eall.com.br/blog/?p=347
http://www.eall.com.br/blog/?p=347
http://www.eall.com.br/blog/?p=312
http://www.eall.com.br/blog/?p=312

perl -e "\$x = ((0x400000 + 0x60000) / 512); printf \"\$x\\n\";"

8960

ps.: 512 is the disk block size

dd if=/var/fakedevices/disk0 of=/tmp/dump.txt bs=512 \

iseek=8960 count=256

256+0 records in

256+0 records out

cat /tmp/dump.txt | tail -5

The intent of this document is to state the conditions under which

VIGRA may be copied, such that the author maintains some

semblance of artistic control over the development of the library,

while giving the users of the library the right to use and

distribute VIGRA in a more-or-less customary fashion, plus the

That´s cool! Don´t you think?

 VIII

ZFS Internals (part #3)

PLEASE BE AWARE THAT ANY INFORMATION YOU MAY FIND HERE MAY BE INAC-
CURATE, AND COULD INCLUDE TECHNICAL INCACCURACIES, TYPOGRAPHICAL ER-

RORS, AND EVEN SPELLING ERRORS.

 From the MANUAL page:

 The zdb command is used by support engineers to diagnose

 failures and gather statistics. Since the ZFS file system is

 always consistent on disk and is self-repairing, zdb should

 only be run under the direction by a support engineer.

DO NOT TRY IT IN PRODUCTION. USE AT YOUR OWN RISK!

Hello all…
Ok, we are analyzing the ZFS ondiskformat (like Jack, in parts). In my first post we
could see the copy-on-write semantics of ZFS in a VI editing session. It’s impor-
tant to notice a few things about that test:
1) First, we were updating a non-structured flat file (text);
2) Second, all blocks were reallocated (data and metadata);
3) Third, VI (and any software i know), for the sake of consistency, rewrite the
whole file when changing something (add/remove/update);
So, that’s why the “non touched block” was reallocated in our example, and this
have nothing to do with the cow (thanks to Eric to point that). But that is a normal
behaviour for softwares updating a flat file. So normal that we just remember that
when we make such tests, because in normal situations those “other writes” ope-
rations did not have a big impatc. VI actually creates another copy, and at the end
move “new” -> “current” (rsync for example, does the same). So, updating a flat
file, is the same as creating a new one. That’s why i did talk about mailservers
that work with mboxes… i don’t know about cyrus, but the others that i know,
rewrite the whole mailbox for almost every update operation. Maybe a mailserver
that creates a mbox like a structured database, with static sized records, could
rewrite a line without need to rewrite the whole file, but i don’t know any MTA/
POP/IMAP like that. See, these tests let us remember why databases exist. ;-)

 IX

http://www.eall.com.br/blog/?p=380
http://www.eall.com.br/blog/?p=380
http://opensolaris.org/os/community/zfs/
http://opensolaris.org/os/community/zfs/
http://www.opensolaris.org/os/community/zfs/docs/ondiskformat0822.pdf
http://www.opensolaris.org/os/community/zfs/docs/ondiskformat0822.pdf
http://www.eall.com.br/blog/?p=312
http://www.eall.com.br/blog/?p=312
http://en.wikipedia.org/wiki/ZFS#Copy-on-write_transactional_model
http://en.wikipedia.org/wiki/ZFS#Copy-on-write_transactional_model
http://opensolaris.org/os/community/zfs/
http://opensolaris.org/os/community/zfs/

Well, in this post we will see some internals about ext2/ext3 filesystem to un-
derstand ZFS.
Let’s do it…
ps.: I did these test on an Ubuntu desktop

dd if=/dev/zero of=fakefs bs=1024k count=100

mkfs.ext3 -b 4096 fakefs

mke2fs 1.40.8 (13-Mar-2008)

fakefs is not a block special device.

Proceed anyway? (y,n) y

Filesystem label=

OS type: Linux

Block size=4096 (log=2)

Fragment size=4096 (log=2)

25600 inodes, 25600 blocks

1280 blocks (5.00%) reserved for the super user

First data block=0

Maximum filesystem blocks=29360128

1 block group

32768 blocks per group, 32768 fragments per group

25600 inodes per group

Writing inode tables: done

Creating journal (1024 blocks): done

Writing superblocks and filesystem accounting information: done

This filesystem will be automatically checked every 29 mounts or

180 days, whichever comes first. Use tune2fs -c or -i to override.

Ok filesytem created, and you can see important informations about it, what i
think is really nice. I think ZFS could give us some information too. i know, it’s
something like “marketing”: We did not pre-allocated nothing… c’mon! ;-)
ps.: Pay attention that we have created the filesystem using 4K blocks, because it
is the bigger available.
Now we mount the brand new filesystem, and put a little text file on it.

mount -oloop fakefs mnt/

debugfs

 X

http://en.wikipedia.org/wiki/Ext2
http://en.wikipedia.org/wiki/Ext2
http://en.wikipedia.org/wiki/Ext3
http://en.wikipedia.org/wiki/Ext3
http://opensolaris.org/os/community/zfs/
http://opensolaris.org/os/community/zfs/

debugfs: stats

... snipped ...

Directories: 2

 Group 0: block bitmap at 8, inode bitmap at 9, inode table at 10

 23758 free blocks, 25589 free inodes, 2 used directories

debugfs: quit

du -sh /etc/bash_completion

216K /etc/bash_completion

cp -pRf /etc/bash_completion mnt/

Just to be sure, let’s umount it, and see what we got from the debugfs:

umount mnt/

debugfs

debugfs: stats

Directories: 2

 Group 0: block bitmap at 8, inode bitmap at 9, inode table at 10

 23704 free blocks, 25588 free inodes, 2 used directories

debugfs: ls

2 (12) . 2 (12) .. 11 (20) lost+found 12 (4052) bash_completion

debugfs: ncheck 12

Inode Pathname

12 /bash_completion

Very nice! Here we already have a lot of informations:
- The file is there. ;-)
- The filesystem used 54 blocks to hold our file. I know it looking at the free
blocks line (23758 - 23704 = 54)
- The inode of our file is 12 (don’t forget it)
But let’s go ahead…

debugfs: show_inode_info bash_completion

Inode: 12 Type: regular Mode: 0644 Flags: 0x0 Generation: 495766590

User: 1000 Group: 1000 Size: 216529

File ACL: 0 Directory ACL: 0

Links: 1 Blockcount: 432

Fragment: Address: 0 Number: 0 Size: 0

ctime: 0x48d4e2da -- Sat Sep 20 08:47:38 2008

 XI

atime: 0x48d4d858 -- Sat Sep 20 08:02:48 2008

mtime: 0x480408b3 -- Mon Apr 14 22:45:23 2008

BLOCKS:

(0-11):1842-1853, (IND):1854, (12-52):1855-1895

TOTAL: 54

Oh, that’s it! Our file is using 53 data block (53 * 4096 = 217.088), and more one
metadata (indirect block 1854). We already have the location too: 12 data blocks
from the position 1842-1853, and 41 data blocks from the position 1855 to
1895. Yes, we don’t believe it! We need to see it by ourselves…

dd if=Devel/fakefs of=/tmp/out skip=1842 bs=4096 count=12

dd if=Devel/fakefs of=/tmp/out2 skip=1855 bs=4096 count=41

cp -pRf /tmp/out /tmp/out3 && cat /tmp/out2 >> /tmp/out3

diff mnt/bash_completion /tmp/out3

9401a9402

>

\ Não há quebra de linha no final do arquivo

debugfs: quit

ps.: just the brazilian portuguese for “Warning: missing newline at end of file” ;-)
Now let’s do the same as we did for ZFS…

vi mnt/bash_completion

 change

unset BASH_COMPLETION_ORIGINAL_V_VALUE

 for

RESET BASH_COMPLETION_ORIGINAL_V_VALUE

umount mnt

sync

The last part, we wil look the new layout of the filesystem…

mount -oloop fakefs mnt

debugfs

debugfs: show_inode_info bash_completion

Inode: 12 Type: regular Mode: 0644 Flags: 0x0 Generation: 495766590

User: 1000 Group: 1000 Size: 216529

File ACL: 0 Directory ACL: 0

Links: 1 Blockcount: 432

Fragment: Address: 0 Number: 0 Size: 0

 XII

http://opensolaris.org/os/community/zfs/
http://opensolaris.org/os/community/zfs/

ctime: 0x48d4f6a3 -- Sat Sep 20 10:12:03 2008

atime: 0x48d4f628 -- Sat Sep 20 10:10:00 2008

mtime: 0x48d4f6a3 -- Sat Sep 20 10:12:03 2008

BLOCKS:

(0-11):24638-24649, (IND):24650, (12-52):24651-24691

TOTAL: 54

Almost the same as ZFS… the block data are totaly new ones, but the metadata
remains in the same inode (12/Generation: 495766590)! Without the copy-on-
write, the metadata is rewriten in place, what in a system crash was the reason of
the fsck (ext2). But we are working with a ext3 filesystem, so the solution for that
possible fail is “journaling”. Ext3 has a log (as you can see in the creation messa-
ges), where the filesystem controls what it is doing before it really does. That not
solves the problem, but makes the recovery easier in the case of a crash.

But what about our data, we need to see our data, show me our…….. ;-)
From the new locations:

dd if=Devel/fakefs of=/tmp/out4 skip=24638 bs=4096 count=12

dd if=Devel/fakefs of=/tmp/out5 skip=24651 bs=4096 count=41

cp -pRf /tmp/out4 /tmp/out6 && cat /tmp/out5 >> /tmp/out6

diff mnt/bash_completion /tmp/out6

9402d9401

<

\ Não há quebra de linha no final do arquivo

and the originals (old)data blocks…

dd if=Devel/fakefs of=/tmp/out skip=1842 bs=4096 count=12

dd if=Devel/fakefs of=/tmp/out2 skip=1855 bs=4096 count=41

cp -pRf /tmp/out /tmp/out3 && cat /tmp/out2 >> /tmp/out3

diff mnt/bash_completion /tmp/out3

9397c9397

< RESET BASH_COMPLETION_ORIGINAL_V_VALUE

> unset BASH_COMPLETION_ORIGINAL_V_VALUE

9401a9402

>

\ Não há quebra de linha no final do arquivo

 XIII

http://opensolaris.org/os/community/zfs/
http://opensolaris.org/os/community/zfs/
http://en.wikipedia.org/wiki/Ext2
http://en.wikipedia.org/wiki/Ext2
http://en.wikipedia.org/wiki/Ext3
http://en.wikipedia.org/wiki/Ext3
http://en.wikipedia.org/wiki/Ext3
http://en.wikipedia.org/wiki/Ext3

That’s it! Copy-on-write is: “Never rewrite a live block (data or metadata)“. He-
re we can see one of the big diff about ZFS and other filesystems. VI rewrite the
whole file (creating a new one), ok both filesystems did allocate other data blocks
for it, but the metadata handling was using different approuches (what actualy do
the whole difference). But if we change just one block? If our program did not cre-
ate a new file, just rewrite the block in place? Subject to other post…
peace!

 XIV

http://en.wikipedia.org/wiki/ZFS#Copy-on-write_transactional_model
http://en.wikipedia.org/wiki/ZFS#Copy-on-write_transactional_model
http://opensolaris.org/os/community/zfs/
http://opensolaris.org/os/community/zfs/

ZFS Internals (part #4)

PLEASE BE AWARE THAT ANY INFORMATION YOU MAY FIND HERE MAY BE INAC-
CURATE, AND COULD INCLUDE TECHNICAL INACCURACIES, TYPOGRAPHICAL ER-

RORS, AND EVEN SPELLING ERRORS.

 From the MANUAL page:

 The zdb command is used by support engineers to diagnose

 failures and gather statistics. Since the ZFS file system is

 always consistent on disk and is self-repairing, zdb should

 only be run under the direction by a support engineer.

DO NOT TRY IT IN PRODUCTION. USE AT YOUR OWN RISK!

In this post we will do something simple, but that shows a great feature of ZFS.
More one time we will use ext3 filesystem to understand a ZFS feature…
Here you can see the layout of the ext3 filesystem, and we will use the same file
to our today’s test:

mount -oloop fakefs mnt

debugfs

debugfs: show_inode_info bash_completion

Inode: 12 Type: regular Mode: 0644 Flags: 0x0 Generation: 495766590

User: 1000 Group: 1000 Size: 216529

File ACL: 0 Directory ACL: 0

Links: 1 Blockcount: 432

Fragment: Address: 0 Number: 0 Size: 0

ctime: 0x48d4f6a3 -- Sat Sep 20 10:12:03 2008

atime: 0x48d4f628 -- Sat Sep 20 10:29:36 2008

mtime: 0x48d4f6a3 -- Sat Sep 20 10:12:03 2008

BLOCKS:

(0-11):24638-24649, (IND):24650, (12-52):24651-24691

TOTAL: 54

 XV

http://www.eall.com.br/blog/?p=406
http://www.eall.com.br/blog/?p=406
http://opensolaris.org/os/community/zfs/
http://opensolaris.org/os/community/zfs/
http://en.wikipedia.org/wiki/Ext3
http://en.wikipedia.org/wiki/Ext3
http://www.eall.com.br/blog/?p=380
http://www.eall.com.br/blog/?p=380
http://en.wikipedia.org/wiki/Ext3
http://en.wikipedia.org/wiki/Ext3

The file we will work on is the only one on that filesystem: bash_completion.
So, let’s see the head of that file:

bash_completion - programmable completion functions for bash 3.x

(backwards compatible with bash 2.05b)

#

$Id: bash_completion,v 1.872 2006/03/01 16:20:18 ianmacd Exp $

#

Copyright (C) Ian Macdonald ian@caliban.org

#

This program is free software; you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by

the Free Software Foundation; either version 2, or (at your option)

Ok, that’s just ten lines of that file, and we have 4096 bytes of data per block of
our filesystem. So, let’s umount that filesystem, and read the first block that has
the first ten lines (block 24638).

umount fakefs

fsck.ext3 -v fakefs

e2fsck 1.40.8 (13-Mar-2008)

fakefs: clean, 12/25600 files, 1896/25600 blocks

dd if=fakefs of=/tmp/out bs=4096 skip=24638 count=1

Now, imagine some bad guy acting wild…

vi /tmp/out

change

This program is free software; you can redistribute it and/or modify

for

This program isn't free software; you can't redistribute it , modify

ps.: That is the problem with flat files, to change it we need worry obout the size
of what we are changing.
So, after we did that, we can put the block back to the filesystem.

dd if=fakefs of=/tmp/fake2 skip=24639 bs=4096

dd if=fakefs of=/tmp/fake1 count=24638 bs=4096

dd if=/tmp/out of=/tmp/out2 ibs=4096 obs=4095 count=1

cat /tmp/out2 >> /tmp/fake1

 XVI

mailto:ian@caliban.org
mailto:ian@caliban.org

cat /tmp/fake2 >> /tmp/fake1

cp -pRf /tmp/fake1 fakefs

fsck.ext3 -v fakefs

e2fsck 1.40.8 (13-Mar-2008)

fakefs: clean, 12/25600 files, 1896/25600 blocks

mount -oloop fakefs mnt/

debugfs

debugfs: open fakefs

debugfs: show_inode_info bash_completion

Inode: 12 Type: regular Mode: 0644 Flags: 0x0 Generation: 495766590

User: 1000 Group: 1000 Size: 216529

File ACL: 0 Directory ACL: 0

Links: 1 Blockcount: 432

Fragment: Address: 0 Number: 0 Size: 0

ctime: 0x48d4f6a3 -- Sat Sep 20 10:12:03 2008

atime: 0x48d4fac0 -- Sat Sep 20 10:29:36 2008

mtime: 0x48d4f6a3 -- Sat Sep 20 10:12:03 2008

BLOCKS:

(0-11):24638-24649, (IND):24650, (12-52):24651-24691

TOTAL: 54

debugfs: quit

head mnt/bash_completion

bash_completion - programmable completion functions for bash 3.x

(backwards compatible with bash 2.05b)

#

$Id: bash_completion,v 1.872 2006/03/01 16:20:18 ianmacd Exp $

#

Copyright (C) Ian Macdonald ian@caliban.org

#

This program isn't free software; you can't redistribute it , modify

it under the terms of the GNU General Public License as published by

the Free Software Foundation; either version 2, or (at your option)

ls -l mnt/bash_completion

-rw-r--r-- 1 leal leal 216529 2008-09-20 10:12 bash_completion

 XVII

mailto:ian@caliban.org
mailto:ian@caliban.org

ps.: I did use dd because i think is simple, and i am simulating a HD with a 100mb
file. But remember that in a real scenario, that task can be done rewriten just that
block, and could be done exactly like this.

Ok, a silent data “corruption”! A really bad one… and the filesystem does not
know anything about it. And don’t forget that all the attrs of that file are identi-
cals. We can use a “false” file for days, without know… What about ZFS? I tell you:
in ZFS that would not gonna happen! Don’t believe me? So you will need to wait
for the next part… ;-)
peace.

 XVIII

http://opensolaris.org/os/community/zfs/
http://opensolaris.org/os/community/zfs/
http://opensolaris.org/os/community/zfs/
http://opensolaris.org/os/community/zfs/

ZFS Internals (part #5)

PLEASE BE AWARE THAT ANY INFORMATION YOU MAY FIND HERE MAY BE INAC-
CURATE, AND COULD INCLUDE TECHNICAL INACCURACIES, TYPOGRAPHICAL ER-

RORS, AND EVEN SPELLING ERRORS.

 From the MANUAL page:

 The zdb command is used by support engineers to diagnose

 failures and gather statistics. Since the ZFS file system is

 always consistent on disk and is self-repairing, zdb should

 only be run under the direction by a support engineer.

DO NOT TRY IT IN PRODUCTION. USE AT YOUR OWN RISK!
Today, we will see if what we did with the ext3 filesystem can be done with ZFS.
We start creating a brand new filesystem, and putting our file into it…

mkfile 100m /var/fakedevices/disk0

zpool create cow /var/fakedevices/disk0

zfs create cow/fs01

cp -pRf /root/bash_completion /cow/fs01/

ls -i /cow/fs01/

4 bash_completion

Ok, now we can start to play..

zdb -dddddd cow/fs01 4

... snipped...

 path /bash_completion

 atime Sun Sep 21 12:03:56 2008

 mtime Sun Sep 21 12:03:56 2008

 ctime Sun Sep 21 12:10:39 2008

 crtime Sun Sep 21 12:10:39 2008

 gen 16

 mode 100644

 size 216071

 parent 3

 XIX

http://www.eall.com.br/blog/?p=427
http://www.eall.com.br/blog/?p=427
http://www.eall.com.br/blog/?p=406
http://www.eall.com.br/blog/?p=406
http://en.wikipedia.org/wiki/Ext3
http://en.wikipedia.org/wiki/Ext3
http://opensolaris.org/os/community/zfs/
http://opensolaris.org/os/community/zfs/

 links 1

 xattr 0

 rdev 0x0000000000000000

Indirect blocks:

 0 L1 0:a000:400 0:120a000:400 4000L/400P F=2 B=16

 0 L0 0:40000:20000 20000L/20000P F=1 B=16

 20000 L0 0:60000:20000 20000L/20000P F=1 B=16

 segment [0000000000000000, 0000000001000000) size 16M

So, now we have the DVA’s for the two data blocks (0:40000 and 0:60000). Let’s
get our data, umount the filesystem, and try to put the data in place again. For
that, we just need the first block…

zdb -R 0:40000:20000:r 2> /tmp/file-part1

head /tmp/file-part1

bash_completion - programmable completion functions for bash 3.x

(backwards compatible with bash 2.05b)

#

$Id: bash_completion,v 1.872 2006/03/01 16:20:18 ianmacd Exp $

#

Copyright (C) Ian Macdonald

#

This program is free software; you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by

the Free Software Foundation; either version 2, or (at your option)

Let’s change the file’s content, and put it there again. But let’s do a change more
difficult to catch this time (just one byte).

vi /tmp/file-part1

change

bash_completion - programmable completion functions for bash 3.x

for

bash_completion - programmable completion functions for bash 1.x

zpool export cow

dd if=/var/fakedevices/disk0 of=/tmp/fs01-part1 bs=512 count=8704

 XX

dd if=/var/fakedevices/disk0 of=/tmp/file-part1 bs=512 iseek=8704 count=256

dd if=/var/fakedevices/disk0 of=/tmp/fs01-part2 bs=512 skip=8960

dd if=/tmp/file-part1 of=/tmp/payload bs=131072 count=1

cp -pRf /tmp/fs01-part1 /var/fakedevices/disk0

cat /tmp/payload >> /var/fakedevices/disk0

cat /tmp/fs01-part2 >> /var/fakedevices/disk0

zpool import -d /var/fakedevices/ cow

zpool status

 pool: cow

 state: ONLINE

 scrub: none requested

config:

 NAME STATE READ WRITE CKSUM

 cow ONLINE 0 0 0

 /var/fakedevices//disk0 ONLINE 0 0 0

errors: No known data errors

Ok, everything seems to be fine. So, let’s get our data…

head /cow/fs01/bash_completion

#

Nothing? But our file is there…

ls -l /cow/fs01

total 517

-rw-r--r-- 1 root root 216071 Sep 21 12:03 bash_completion

ls -l /root/bash_completion

-rw-r--r-- 1 root root 216071 Sep 21 12:03 /root/bash_completion

Let’s see the zpool status command again…

zpool status -v

 pool: cow

 state: ONLINE

status: One or more devices has experienced an error resulting in data

 corruption. Applications may be affected.

action: Restore the file in question if possible. Otherwise restore the

 entire pool from backup.

 XXI

 see: http://www.sun.com/msg/ZFS-8000-8A

 scrub: none requested

config:

 NAME STATE READ WRITE CKSUM

 cow ONLINE 0 0 2

 /var/fakedevices//disk0 ONLINE 0 0 2

errors: 1 data errors, use '-v' for a list

Oh, trying to access the file, ZFS could see the checksum error on the block poin-
ter. That’s why is important to schedule a scrub, because it will traverse the entire
pool looking for errors like that. In this example i did use a pool with just one
disk, in a real situation, don’t do that! If we had a mirror for example, ZFS would
fix the problem using a “good” copy (in this case, if the bad guy did not mess with
it too). What zdb can show to us?

zdb -c cow

Traversing all blocks to verify checksums and verify nothing leaked ...

zdb_blkptr_cb: Got error 50 reading <21, 4, 0, 0> -- skipping

Error counts:

 errno count

 50 1

leaked space: vdev 0, offset 0x40000, size 131072

block traversal size 339456 != alloc 470528 (leaked 131072)

 bp count: 53

 bp logical: 655360 avg: 12365

 bp physical: 207360 avg: 3912 compression: 3.16

 bp allocated: 339456 avg: 6404 compression: 1.93

 SPA allocated: 470528 used: 0.47%

 XXII

http://www.sun.com/msg/ZFS-8000-8A
http://www.sun.com/msg/ZFS-8000-8A
http://opensolaris.org/os/community/zfs/
http://opensolaris.org/os/community/zfs/
http://opensolaris.org/os/community/zfs/
http://opensolaris.org/os/community/zfs/

Ok, we have another copy (from a trusted media ;)…

cp -pRf /root/bash_completion /cow/fs01/bash_completion

head /cow/fs01/bash_completion

bash_completion - programmable completion functions for bash 3.x

(backwards compatible with bash 2.05b)

#

$Id: bash_completion,v 1.872 2006/03/01 16:20:18 ianmacd Exp $

#

Copyright (C) Ian Macdonald

#

This program is free software; you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by

the Free Software Foundation; either version 2, or (at your option)

Now everything is in a good shape again…
see ya.

 XXIII

ZFS Internals (part #6)

PLEASE BE AWARE THAT ANY INFORMATION YOU MAY FIND HERE MAY BE INAC-
CURATE, AND COULD INCLUDE TECHNICAL INACCURACIES, TYPOGRAPHICAL ER-

RORS, AND EVEN SPELLING ERRORS.

 From the MANUAL page:

 The zdb command is used by support engineers to diagnose

 failures and gather statistics. Since the ZFS file system is

 always consistent on disk and is self-repairing, zdb should

 only be run under the direction by a support engineer.

DO NOT TRY IT IN PRODUCTION. USE AT YOUR OWN RISK!

In this post let’s see some important feature of the ZFS filesystem, that i think is
not well understood and i will try to show some aspects, and my understanding
about this technology. I’m talking about the ZFS Intent Log.
Actually, the first distinction that the devel team wants us to know, is about the
two pieces:
- ZIL: the code..
- ZFS Intent log (this can be in a separated device, thus slog)
The second point i think is important to note, is the purpose of such ZFS’ feature.
All filesystems that i know that use some logging technology, use it to maintain
filesystem consistency (making the fsck job faster). ZFS does not…
ZFS is always consistent on disk (transactional all-or-nothing model), and so the-
re is no need for fsck, and if you find some inconsistency (i did find one), it’s a
bug. ;-) The copy-on-write semantics was meant to guarantee the always consis-
tent state of ZFS. I did talk about it on my earlier posts about ZFS Internals, even
the name of the zpools used in the examples was cow. ;-)
So, why ZFS has a log feature (or a slog device)? Performance is the answer!
A primary goal of the development of ZFS was consistency, and honor all the fi-
lesystems operations (what seems to be trivial), but some filesystems (even disks)
do not.

 XXIV

http://www.eall.com.br/blog/?p=701
http://www.eall.com.br/blog/?p=701
http://en.wikipedia.org/wiki/Journaling_file_system
http://en.wikipedia.org/wiki/Journaling_file_system
http://en.wikipedia.org/wiki/Fsck
http://en.wikipedia.org/wiki/Fsck
http://www.opensolaris.org/jive/thread.jspa?threadID=86179&tstart=30
http://www.opensolaris.org/jive/thread.jspa?threadID=86179&tstart=30

So, For ZFS a sync request is a sync done.
For ZFS, a perfect world would be:

 +------------------+ +--------------------------------+

 | write requests | ----------> | ZFS writes to the RAM's buffer |

 +------------------+ +--------------------------------+

So, when the RAM’s buffer is full:

+---------------------------+ +------------------------+

 | ZFS RAM's buffer is full | ----------> | ZFS writes to the pool |

+---------------------------+ +------------------------+

For understanding, imagine you are moving your residence, from one city to
another. You have the TV, bed, computer desk, etc, as the “write requests”… and
the truck as RAM’s buffer, and the other house as the disks (ZFS pool). The better
approuch is to have sufficient RAM (a big truck), put all stuff into it, and transfer
the whole thing at once.
But you know, the world is not perfect…
That writes that can wait the others (all stuff will go to the new house together),
are asynchronous writes. But there are some that can not wait, and need to be
written as fast as possible. That ones are the synchronous writes, the filesystems
nightmare, and is when the ZFS intent log comes in.
If we continue with our example, we would have two (or more trucks), one would
go to the new city full, and others with just one request (a TV for example). Ima-
gine the situation: bed, computer, etc, put in one truck, but the TV needs to go
now! Ok, so send a special truck just for it… Before the TV truck returns, we have
another TV that can not wait too (another truck).
So, the ZFS intent log comes in to address that problem. *All* synchronous re-
quests are written to the ZFS intent log instead to write to the disks (main pool).
ps.: Actually not *all* sync requests are written to ZFS intent log. I will talk about
that in another post…

 XXV

The sequence is something like:

 +----------------+ +-------------------------------+

 | write requests | ----> | ZFS writes to the RAM's buffer |-------+

 +----------------+ +-------------------------------+ |

 |

 ZFS acks the clients +-----------------------------------+ |

 <--------------------- |syncs are written to ZFS intent log |<-----+

 +-----------------------------------+

So, when the RAM’s buffer is full:

+---------------------------+ +------------------------+

| ZFS RAM's buffer is full | -------------->| ZFS writes to the pool |

+---------------------------+ +------------------------+

See, we can make the world a better place. ;-)
If you pay attention, you will see that the flow is just one:

 requests ------> RAM -------->disks

or

 requests ------> RAM--------->ZFS intent log

 |

 +---->disks

The conclusion is: The intent log is never read (while the system is runnning), just
written. I think that is something not very clear: the intent log needs to be read
after a crash, just that. Because if the system crash and there are some data that
was written to the ZFS intent log, and not written to the main pool, the system
needs to read the ZFS intent log and replay any transactions that are not on the
main pool.

 XXVI

From the source code:

/*

 40 * The zfs intent log (ZIL) saves transaction records of system calls

 41 * that change the file system in memory with enough information

 42 * to be able to replay them. These are stored in memory until

 43 * either the DMU transaction group (txg) commits them to the stable pool

 44 * and they can be discarded, or they are flushed to the stable log

 45 * (also in the pool) due to a fsync, O_DSYNC or other synchronous

 46 * requirement. In the event of a panic or power fail then those log

 47 * records (transactions) are replayed.

 48 *

...

ps.: More one place where ZFS intent log is called ZIL. ;-)
Some days ago looking at the SUN’s fishworks solution, i did see that there is no
redundancy on the fishworks slog devices. Just one, or stripe… so i did realize
that the “window” of problem is around five seconds! i mean, the system did write
the data to the ZFS intent log device (slog), and just after that the slog device did
fail, and before the system write the data on the main pool (what is around five
seconds), the system crash.
Ok, but before you start to use the SUN’s approuch, i think there is at least one
bug that need to be addressed:
6733267 “Allow a pool to be imported with a missing slog”
But if you do not export the pool, i think you are in good shape…
In another post of ZFS internals series, i will try to go deeper into ZFS intent log,
and see some aspects that i did not touch here. Obviously, with some action… ;-)
But now i need to sleep!
peace.

 XXVII

http://bugs.opensolaris.org/bugdatabase/printableBug.do?bug_id=6733267
http://bugs.opensolaris.org/bugdatabase/printableBug.do?bug_id=6733267
http://www.eall.com.br/blog/?page_id=588
http://www.eall.com.br/blog/?page_id=588

ZFS Internals (part #7)

PLEASE BE AWARE THAT ANY INFORMATION YOU MAY FIND HERE MAY BE INAC-
CURATE, AND COULD INCLUDE TECHNICAL INACCURACIES, TYPOGRAPHICAL ER-

RORS, AND EVEN SPELLING ERRORS.

 From the MANUAL page:

 The zdb command is used by support engineers to diagnose

 failures and gather statistics. Since the ZFS file system is

 always consistent on disk and is self-repairing, zdb should

 only be run under the direction by a support engineer.

DO NOT TRY IT IN PRODUCTION. USE AT YOUR OWN RISK!
Ok, we did talk about dva’s on the first and second posts, and actually that is the
main concept behind the block pointers and indirect blocks in ZFS. So, the dva
(data virtual address), is a combination of an physical vdev and an offset. By de-
fault, ZFS stores one DVA for user data, two DVAs for filesystem metadata, and
three DVAs for metadata that’s global across all filesystems in the storage pool,
so any block pointer in a ZFS filesystem has at least two copies. If you look at the
link above (the great post about Ditto Blocks), you will see that the ZFS engineers
were thinking about add the same feature for data blocks, and here you can see
that this is already there.

ls -li /cow/fs01/

4 file.txt

md5sum /cow/fs01/file.txt

6bf2b8ab46eaa33b50b7b3719ff81c8c /cow/fs01/file.txt

So, let’s smash some ditto blocks, and see some ZFS action…

zdb -dddddd cow/fs01 4

... snipped ...

Indirect blocks:

 0 L1 1:11000:400 0:11000:400 4000L/400P F=2 B=8

 0 L0 1:20000:20000 20000L/20000P F=1 B=8

 20000 L0 1:40000:20000 20000L/20000P F=1 B=8

 segment [0000000000000000, 0000000000040000) size 256K

 XXVIII

http://www.eall.com.br/blog/?p=364
http://www.eall.com.br/blog/?p=364
http://opensolaris.org/os/community/zfs/
http://opensolaris.org/os/community/zfs/
http://blogs.sun.com/bill/entry/ditto_blocks_the_amazing_tape
http://blogs.sun.com/bill/entry/ditto_blocks_the_amazing_tape
http://blogs.sun.com/bill/entry/ditto_blocks_the_amazing_tape
http://blogs.sun.com/bill/entry/ditto_blocks_the_amazing_tape
http://blogs.sun.com/bill/entry/ditto_blocks_the_amazing_tape
http://blogs.sun.com/bill/entry/ditto_blocks_the_amazing_tape
http://blogs.sun.com/relling/entry/zfs_copies_and_data_protection
http://blogs.sun.com/relling/entry/zfs_copies_and_data_protection

You can see above (bold) the two dva’s for the block pointer L1(level 1): 0:11000
and 1:11000.

zpool status cow

 pool: cow

 state: ONLINE

 scrub: none requested

config:

 NAME STATE READ WRITE CKSUM

 cow ONLINE 0 0 0

 /var/fakedevices/disk0 ONLINE 0 0 0

 /var/fakedevices/disk1 ONLINE 0 0 0

errors: No known data errors

Ok, now we need to export the filesystem, and simulate a silent data corruption
on the first vdev that clears the first block pointer (1K). We will write 1K of zeros
where should be a bp copy.

zfs export cow

perl -e "\$x = ((0x400000 + 0x11000) / 512); printf \"\$x\\n\";"

8328

dd if=/var/fakedevices/disk0 of=/tmp/fs01-part1 bs=512 count=8328

dd if=/var/fakedevices/disk0 of=/tmp/firstbp bs=512 iseek=8328 count=2

dd if=/var/fakedevices/disk0 of=/tmp/fs01-part2 bs=512 skip=8330

dd if=/dev/zero of=/tmp/payload bs=1024 count=1

cp -pRf /tmp/fs01-part1 /var/fakedevices/disk0

cat /tmp/payload >> /var/fakedevices/disk0

cat /tmp/fs01-part2 >> /var/fakedevices/disk0

That’s it, our two disks are there, whith the first one corrupted.

zpool import -d /var/fakedevices/ cow

zpool status cow

 pool: cow

 state: ONLINE

 scrub: none requested

config:

 NAME STATE READ WRITE CKSUM

 XXIX

 cow ONLINE 0 0 0

 /var/fakedevices/disk0 ONLINE 0 0 0

 /var/fakedevices/disk1 ONLINE 0 0 0

errors: No known data errors

Well, as always the import procedure was fine, and the pool seems to be perfect.
Let’s see the md5 of our file:

md5sum /cow/fs01/file.txt

6bf2b8ab46eaa33b50b7b3719ff81c8c /cow/fs01/file.txt

Good too! ZFS does not know about the corrupted pointer? Let’s try it again…

zpool status

 pool: cow

 state: ONLINE

status: One or more devices has experienced an unrecoverable error. An

 attempt was made to correct the error. Applications are unaffected.

action: Determine if the device needs to be replaced, and clear the errors

 using 'zpool clear' or replace the device with 'zpool replace'.

 see: http://www.sun.com/msg/ZFS-8000-9P

 scrub: none requested

config:

 NAME STATE READ WRITE CKSUM

 cow ONLINE 0 0 0

 /var/fakedevices/disk0 ONLINE 0 0 1

 /var/fakedevices/disk1 ONLINE 0 0 0

As always, we need to try to access the data to ZFS identify the error. So, following
the ZFS concept, and the message above, the first dva must be good as before at
this point. So, let’s look..

zpool export cow

dd if=/var/fakedevices/disk0 of=/tmp/firstbp bs=512 iseek=8328 count=2

dd if=/var/fakedevices/disk1 of=/tmp/secondbp bs=512 iseek=8328 count=2

md5sum /tmp/*bp

70f12e12d451ba5d32b563d4a05915e1 /tmp/firstbp

70f12e12d451ba5d32b563d4a05915e1 /tmp/secondbp

 XXX

http://www.sun.com/msg/ZFS-8000-9P
http://www.sun.com/msg/ZFS-8000-9P

;-)
But something is confused about the ZFS behaviour, because i could see a better
information about what was fixed if i first execute a scrub. Look (executing a
scrub just after import the pool):

zpool scrub cow

zpool status cow

 pool: cow

 state: ONLINE

status: One or more devices has experienced an unrecoverable error. An

 attempt was made to correct the error. Applications are unaffected.

action: Determine if the device needs to be replaced, and clear the errors

 using 'zpool clear' or replace the device with 'zpool replace'.

 see: http://www.sun.com/msg/ZFS-8000-9P

 scrub: scrub completed after 0h0m with 0 errors on Sun Dec 28 17:52:59 2008

config:

 NAME STATE READ WRITE CKSUM

 cow ONLINE 0 0 0

 /var/fakedevices/disk0 ONLINE 0 0 1 1K repaired

 /var/fakedevices/disk1 ONLINE 0 0 0

errors: No known data errors

Excellent! 1K was the bad data we have injected on the pool (and the whole diff
between one and another output)! But the automatic repair of the ZFS did not
show us that, and does not matter if we execute a scrub after it. I think because
the information was not gathered in the automatic resilver, what the scrub pro-
cess does. if there is just one code to fix a bad block, both scenarios should give
the same information right? So, being very simplistic (and doing a lot of specutla-
tion, without look the code), seems like two procedures, or a little bug…

Well, i will try to see that on the code, or use dtrace to see the stack trace for one
and other process when i got some time. But i’m sure the readers know the
answer, and i will not need to…
;-)
peace

 XXXI

http://www.sun.com/msg/ZFS-8000-9P
http://www.sun.com/msg/ZFS-8000-9P

ZFS Internals (part #8)

PLEASE BE AWARE THAT ANY INFORMATION YOU MAY FIND HERE MAY BE INAC-
CURATE, AND COULD INCLUDE TECHNICAL INACCURACIES, TYPOGRAPHICAL ER-
RORS, AND EVEN SPELLING ERRORS.

 From the MANUAL page:

 The zdb command is used by support engineers to diagnose

 failures and gather statistics. Since the ZFS file system is

 always consistent on disk and is self-repairing, zdb should

 only be run under the direction by a support engineer.

DO NOT TRY IT IN PRODUCTION. USE AT YOUR OWN RISK!

That’s is something trick, and i think is important to write about… i’m talking
about ZFS vdevs.
ZFS has two types of vdevs: logical and physical. So, from the ZFS on-disk specifi-
cation, we know that a physical vdev is a writeable media device, and a logical
vdev is a grouping of physical vdevs.
Let’s see a simple diagram using a RAIDZ logical vdev, and five physical vdevs:

 +---------------------+

 | Root vdev |

 +---------------------+

 |

 +--------------+

 | RAIDZ | VIRTUAL VDEV

 +--------------+

 |

 +----------+

 | 128KB | CHECKSUM

 +----------+

 |

 32KB 32KB 32KB 32KB Parity

 .------. .------. .------. .------. .------.

|-______-| |-______-| |-______-| |-______-| |-______-|

| vdev1 | | Vdev2 | | Vdev3 | | Vdev4 | | Vdev5 | PHYSICAL VDEV

 '-____-' '-____-' '-____-' '-____-' '-_____-'

 XXXII

http://www.eall.com.br/blog/?p=784
http://www.eall.com.br/blog/?p=784

The diagram above was just an example, and in that example the data that we are
handling in the RAIDZ virtual vdev is a block of 128KB. That was just to make my
math easy, so i could divide equal to all phisycal vdevs. ;-)

But remember that with RAIDZ we have always a full stripe, not matter the size of
the data.
The important part here is the filesystem block. When i did see the first video pre-
sentation about ZFS,

i had the wrong perception about the diagram above. As we can see, if the system
reclaims a block, let’s say the 128KB block above, and the physical vdev 1 gives
the wrong data, ZFS just fix the data on that physical vdev, right? Wrong… and
that was my wrong perception. ;-)
ZFS RAIDZ virtual vdev does not know which physical vdev (disk) gave the wrong
data. And here i think there is a great level of abstraction that shows the beauty
about ZFS… because the filesystems are there (on the physical vdevs), but there is
not an explict relation! A filesystem block has nothing to do with a disk block. So,
the checksum of the data block is not at the physical vdev level, and so ZFS can-
not know directly what disk gave the wrong data without a “combinatorial recons-
truction” to identify the culprit. From the vdev_raidz.c:

 784 static void

 785 vdev_raidz_io_done(zio_t *zio)

 786 {

...

 853 /*

 854 * If the number of errors we saw was correctable -- less than or equal

 855 * to the number of parity disks read -- attempt to produce data that

 856 * has a valid checksum. Naturally, this case applies in the absence of

 857 * any errors.

 858 */

...

That gives a good understanding of the design of ZFS. I really like that way of sol-
ving problems, and to have specialized parts like this one. Somebody can think
that this behaviour is not optimum. But remember that this is something that
should not happen all the time.

 XXXIII

http://src.opensolaris.org/source/xref/onnv/onnv-gate/usr/src/uts/common/fs/zfs/vdev_raidz.c
http://src.opensolaris.org/source/xref/onnv/onnv-gate/usr/src/uts/common/fs/zfs/vdev_raidz.c
http://src.opensolaris.org/source/xref/onnv/onnv-gate/usr/src/uts/common/fs/zfs/vdev_raidz.c
http://src.opensolaris.org/source/xref/onnv/onnv-gate/usr/src/uts/common/fs/zfs/vdev_raidz.c
http://src.opensolaris.org/source/s?refs=vdev_raidz_io_done&project=/onnv
http://src.opensolaris.org/source/s?refs=vdev_raidz_io_done&project=/onnv
http://src.opensolaris.org/source/s?defs=zio_t&project=/onnv
http://src.opensolaris.org/source/s?defs=zio_t&project=/onnv
http://src.opensolaris.org/source/s?defs=zio&project=/onnv
http://src.opensolaris.org/source/s?defs=zio&project=/onnv

In mirror we have a whole different situation, because all the data is on any devi-
ce, and so ZFS can match the checksum, and read the other vdevs looking for the
right answer. Remember that we can have n-way mirror…

In the source we can see that a normal read is done in any device:

 252 static int

 253 vdev_mirror_io_start(zio_t *zio)

 254 {

...

 279 /*

 280 * For normal reads just pick one child.

 281 */

 282 c = vdev_mirror_child_select(zio);

 283 children = (c >= 0);

...

 So, ZFS knows if this data is OK or not, and if it is not, it can fix it. But

without

to know which disk but which physical vdev. ;-) The procedure is the same

without the

combinatorial reconstruction. And as a final note, the resilver of a block is

not copy

on write, so in the code we have a comment about it:

 402 /*

 403 * Don't rewrite known good children.

 404 * Not only is it unnecessary, it could

 405 * actually be harmful: if the system lost

 406 * power while rewriting the only good copy,

 407 * there would be no good copies left!

 408 */

 So the physical vdev that has a good copy is not touched. As we need to see to

believe...

 XXXIV

http://src.opensolaris.org/source/s?refs=vdev_mirror_io_start&project=/onnv
http://src.opensolaris.org/source/s?refs=vdev_mirror_io_start&project=/onnv
http://src.opensolaris.org/source/s?defs=zio_t&project=/onnv
http://src.opensolaris.org/source/s?defs=zio_t&project=/onnv
http://src.opensolaris.org/source/s?defs=zio&project=/onnv
http://src.opensolaris.org/source/s?defs=zio&project=/onnv
http://src.opensolaris.org/source/xref/onnv/onnv-gate/usr/src/uts/common/fs/zfs/vdev_mirror.c#vdev_mirror_child_select
http://src.opensolaris.org/source/xref/onnv/onnv-gate/usr/src/uts/common/fs/zfs/vdev_mirror.c#vdev_mirror_child_select
http://src.opensolaris.org/source/s?defs=zio&project=/onnv
http://src.opensolaris.org/source/s?defs=zio&project=/onnv
http://src.opensolaris.org/source/xref/onnv/onnv-gate/usr/src/uts/common/fs/zfs/vdev_mirror.c#children
http://src.opensolaris.org/source/xref/onnv/onnv-gate/usr/src/uts/common/fs/zfs/vdev_mirror.c#children

mkfile 100m /var/fakedevices/disk1

mkfile 100m /var/fakedevices/disk2

zpool create cow mirror /var/fakedevices/disk1 /var/fakedevices/disk2

zfs create cow/fs01

cp -pRf /etc/mail/sendmail.cf /cow/fs01/

ls -i /cow/fs01/

 4 sendmail.cf

zdb -dddddd cow/fs01 4

Dataset cow/fs01 [ZPL], ID 30, cr_txg 15, 58.5K, 5 objects, rootbp [L0 DMU ob-

jset] \\

400L/200P DVA[0]=<0:21200:200> DVA[1]=<0:1218c00:200> fletcher4 lzjb LE conti-

guous \\

birth=84 fill=5 cksum=99a40530b:410673cd31e:df83eb73e794:207fa6d2b71da7

 Object lvl iblk dblk lsize asize type

 4 1 16K 39.5K 39.5K 39.5K ZFS plain file (K=inherit) (Z=inh-

erit)

 264 bonus ZFS znode

 path /sendmail.cf

 uid 0

 gid 2

 atime Mon Jul 13 19:01:42 2009

 mtime Wed Nov 19 22:35:39 2008

 ctime Mon Jul 13 18:30:19 2009

 crtime Mon Jul 13 18:30:19 2009

 gen 17

 mode 100444

 size 40127

 parent 3

 links 1

 xattr 0

 rdev 0x0000000000000000

Indirect blocks:

 0 L0 0:11200:9e00 9e00L/9e00P F=1 B=17

 segment [0000000000000000, 0000000000009e00) size 39.5K

 XXXV

 So, we have a mirror of two disk, and a little file on it... let's do a little

math, and

smash the data block from the first disk:

zpool export cow

perl -e "\$x = ((0x400000 + 0x11200) / 512); printf \"\$x\\n\";"

dd if=/tmp/garbage.txt of=/var/disk1 bs=512 seek=8329 count=79 conv="nocreat,n-

otrunc"

zpool import -d /var/fakedevices/ cow

cat /cow/fs01/sendmail.cf > /dev/null

zpool status cow

 pool: cow

 state: ONLINE

status: One or more devices has experienced an unrecoverable error. An

 attempt was made to correct the error. Applications are unaffected.

action: Determine if the device needs to be replaced, and clear the errors

 using 'zpool clear' or replace the device with 'zpool replace'.

 see: http://www.sun.com/msg/ZFS-8000-9P

 scrub: none requested

config:

 NAME STATE READ WRITE CKSUM

 cow ONLINE 0 0 0

 mirror ONLINE 0 0 0

 /var/disk1 ONLINE 0 0 1

 /var/disk2 ONLINE 0 0 0

errors: No known data errors

Now let's export the pool and read our data from the same offset in both disks:

dd if=/var/fakedevices/disk1 of=/tmp/dump.txt bs=512 skip=8329 count=79

dd if=/var/fakedevices/disk2 of=/tmp/dump2.txt bs=512 skip=8329 count=79

diff /tmp/dump.txt /tmp/dump2.txt

head /tmp/dump.txt

#

Copyright (c) 1998-2004 Sendmail, Inc. and its suppliers.

 XXXVI

http://www.sun.com/msg/ZFS-8000-9P
http://www.sun.com/msg/ZFS-8000-9P

All rights reserved.

Copyright (c) 1983, 1995 Eric P. Allman. All rights reserved.

Copyright (c) 1988, 1993

The Regents of the University of California. All rights reserved.

#

Copyright 1993, 1997-2006 Sun Microsystems, Inc. All rights reserved.

Use is subject to license terms.

#

head /etc/mail/sendmail.cf

#

Copyright (c) 1998-2004 Sendmail, Inc. and its suppliers.

All rights reserved.

Copyright (c) 1983, 1995 Eric P. Allman. All rights reserved.

Copyright (c) 1988, 1993

The Regents of the University of California. All rights reserved.

#

Copyright 1993, 1997-2006 Sun Microsystems, Inc. All rights reserved.

Use is subject to license terms.

#

 So, never burn your physical vdevs, because you can (almost) always get some

files from it.

 Even if the ZFS can't. ;-)

 peace

 XXXVII

ZFS Internals (part #9)

PLEASE BE AWARE THAT ANY INFORMATION YOU MAY FIND HERE MAY BE INAC-
CURATE, AND COULD INCLUDE TECHNICAL INACCURACIES, TYPOGRAPHICAL ER-
RORS, AND EVEN SPELLING ERRORS.

 From the MANUAL page:

 The zdb command is used by support engineers to diagnose

 failures and gather statistics. Since the ZFS file system is

 always consistent on disk and is self-repairing, zdb should

 only be run under the direction by a support engineer.

DO NOT TRY IT IN PRODUCTION. USE AT YOUR OWN RISK!

Some builds ago there was a great change in OpenSolaris regarding ZFS. It was
not a change in the ZFS itself because the change was the adition of a new sche-
duling class (but with great impact on ZFS).

OpenSolaris had six scheduling classes until then:
- Timeshare (TS);
This is the classical. Each process (thread) has an amount of time to use the pro-
cessor resources, and that “amount of time” is based on priorities. This schedu-
ling class works changing the process priority.
- Interactive (IA);
This is something interesting in OpenSolaris, because it is designed to give a bet-
ter response time to the desktop user. Because the windown that is active has a
priority boosts from the OS.
- Fair Share (FSS);
Here there is a division of the processor (fair? ;-) in units, so the administrator can
allocate the processor resourcers in a controlled way. I have a screencast series
about Solaris/OpenSolaris features so you can see a live demonstration about re-
source management and this FSS scheduling class. Take a look at the containers
series…
- Fixed Priority (FX);
As the name suggests, the OS does not change the priority of the thread, so the
time quantum of the thread is always the same.
- Real Time (RT);

 XXXVIII

http://www.eall.com.br/blog/?p=1498
http://www.eall.com.br/blog/?p=1498
http://www.eall.com.br/blog/?page_id=30
http://www.eall.com.br/blog/?page_id=30
http://www.eall.com.br/blog/?page_id=30
http://www.eall.com.br/blog/?page_id=30

This is intended to guarantee a good response time (latency). So, is like a special
queue on the bank (if you have special necessities, a pregnant lady, elder, or have
many, many dollars). Actually this kind of person do not go to bank.. hmmm bad
example, anyway…
- System (SYS);
For the bank owner. ;-)
Hilarious, because here was the problem with ZFS! Actually, the SYS was not pre-
pared for ZFS’s transaction group sync processing.

There were many problems with the behaviour of ZFS IO/Scheduler:

6471212 need reserved I/O scheduler slots to improve I/O latency of critical ops
6494473 ZFS needs a way to slow down resilvering
6721168 slog latency impacted by I/O scheduler during spa_sync
6586537 async zio taskqs can block out userland commands
ps.: I would add to this list the scrub process too…

The solution on the new scheduling class (#7) is called:

System Duty Cycle Scheduling Class (SDC);

The first thing that i did think reading the theory statement from the project was
not so clear why fix a IO problem changing the scheduler class, actualy messing
with the management of the processor resources. Well, that’s why i’m not a kernel
engineer… thinking well, seems like a clever solution, and given the complexity of
ZFS, the easy way to control it.
As you know, ZFS has IO priorities and deadlines, synchronous IO (like sync/writes
and reads) have the same priority. My first idea was to have separated slots for
different type of operation. It’s interesting because this problem was subject of a
post from Bill Moore about how ZFS was handling a massive write keeping up the
reads.
So, there were some discussions about why create another scheduling class and
not just use the SYS class. And the answer was that the sys class was not designed
to run kernel threads that are large consumers of CPU time. And by definition, SYS
class threads run without preemption from anything other than real-time and in-
terrupt threads.
And more:

 XXXIX

http://en.wikipedia.org/wiki/Larry_Ellison
http://en.wikipedia.org/wiki/Larry_Ellison
http://bugs.opensolaris.org/view_bug.do?bug_id=6471212
http://bugs.opensolaris.org/view_bug.do?bug_id=6471212
http://bugs.opensolaris.org/bugdatabase/view_bug.do;jsessionid=1fdffff18daf6d009bf2a13fe668?bug_id=6494473
http://bugs.opensolaris.org/bugdatabase/view_bug.do;jsessionid=1fdffff18daf6d009bf2a13fe668?bug_id=6494473
http://bugs.opensolaris.org/view_bug.do?bug_id=6721168
http://bugs.opensolaris.org/view_bug.do?bug_id=6721168
http://bugs.opensolaris.org/view_bug.do?bug_id=6586537
http://bugs.opensolaris.org/view_bug.do?bug_id=6586537
http://www.eall.com.br/blog/?p=1170
http://www.eall.com.br/blog/?p=1170
http://www.eall.com.br/blog/?p=1170
http://www.eall.com.br/blog/?p=1170
http://blogs.sun.com/bill/entry/zfs_vs_the_benchmark
http://blogs.sun.com/bill/entry/zfs_vs_the_benchmark
http://blogs.sun.com/bill/entry/zfs_vs_the_benchmark
http://blogs.sun.com/bill/entry/zfs_vs_the_benchmark
http://mail.opensolaris.org/pipermail/opensolaris-arc/2009-November/019131.html
http://mail.opensolaris.org/pipermail/opensolaris-arc/2009-November/019131.html
http://mail.opensolaris.org/pipermail/opensolaris-arc/2009-November/019131.html
http://mail.opensolaris.org/pipermail/opensolaris-arc/2009-November/019131.html
http://mail.opensolaris.org/pipermail/opensolaris-arc/2009-November/019131.html
http://mail.opensolaris.org/pipermail/opensolaris-arc/2009-November/019131.html

Each (ZFS) sync operation generates a large batch of I/Os, and each I/O may need
to be compressed and/or checksummed before it is written to storage. The taskq
threads which perform the compression and checksums will run nonstop as long
as they have work to do; a large sync operation on a compression-heavy dataset
can keep them busy for seconds on end.

ps.: And we were not talking about dedup yet, seems like a must fix for the evolu-
tion of ZFS…
You see how our work is wonderful, by definition NAS servers have no CPU bottle-
neck, and that is why ZFS has all these wonderful features, and new features like
dedup are coming. But the fact that CPU is not a problem, actually was the pro-
blem. ;-) It’s like give to me the MP4-25 from Lewis Hamilton. ;-)))
There is another important point with this PSARC integration, because now we can
observe the ZFS IO processing because was introduced a new system process with
the name: zpool-poolname, which gives us observability using simple commands
like ps and prstat. Cool!
I confess i did not had the time to do a good test with this new scheduling class
implementation, and how it will perform. This fix was commited on the build 129,
and so should be on the production ready release from OpenSolaris OS (2010.03).
Would be nice to hear the comments from people that is already using this new
OpenSolaris implementation, and how the dedup is performing with this.
peace

 XL

http://carlaunch.mclaren.com/
http://carlaunch.mclaren.com/

